Solving the inverse problem of moments using the Christoffel-Darboux kernel

by
Nikos Stylianopoulos
University of Cyprus
nikos@ucy.ac.cy

Let μ be finite Borel measure having compact and infinite support $S=$ $\operatorname{supp}(\mu)$ in the complex plane \mathbb{C}, and consider the Lebesgue space $L^{2}(\mu)$, with inner product $\langle f, g\rangle_{\mu}:=\int f(z) \overline{g(z)} d \mu(z)$ and norm $\|f\|_{L^{2}(\mu)}:=\sqrt{\langle f, f\rangle_{\mu}}$.

Let $\left\{p_{n}(\mu, z)\right\}_{n=0}^{\infty}$ denote the sequence of orthonormal polynomials associated with μ; that is, the unique sequence of the form

$$
p_{n}(\mu, z)=\gamma_{n}(\mu) z^{n}+\cdots, \quad \gamma_{n}(\mu)>0, \quad n=0,1,2, \ldots,
$$

satisfying $\left\langle p_{m}(\mu, \cdot), p_{n}(\mu, \cdot)\right\rangle_{\mu}=\delta_{m, n}$.
An extremal problem leads to the sequence $\left\{\lambda_{n}(\mu, z)\right\}_{n=0}^{\infty}$ of the so-called Christoffel functions associated with the measure μ. These are defined, for any $z \in \mathbb{C}$, by $\lambda_{n}(\mu, z):=\inf \left\{\|P\|_{L^{2}(\mu)}^{2}, P \in \mathbb{P}_{n}\right.$ with $\left.P(z)=1\right\}$, where \mathbb{P}_{n} stands for the space of complex polynomials of degree up to n. Using the Cauchy-Schwarz inequality it is easy to verify that

$$
\frac{1}{\lambda_{n}(\mu, z)}=\sum_{k=0}^{n}\left|p_{k}(\mu, z)\right|^{2}, \quad z \in \mathbb{C} .
$$

Hence, $\lambda_{n}(\mu, z)$ is the reciprocal of the diagonal of the Christoffel-Darboux kernel

$$
K_{n}(\mu, z, \zeta):=\sum_{k=0}^{n} \overline{p_{k}(\mu, \zeta)} p_{k}(\mu, z) .
$$

The purpose of the talk is describe an reconstruction algorithm, based on the asymptotics of the Christoffel-Darboux kernel, for computing approximations to the support S of μ. The input of the algorithm is a finite set of the complex moments

$$
\int z^{m} \bar{z}^{n} d \mu(z), \quad m \cdot n=0,1, \ldots
$$

of the measure μ. This leads to applications in geometric tomography and the detection of outliers and anomalies in statistical data.

